A Simulation and Optimization Methodology for Reliability of Vehicle Fleets

Zissimos P. Mourelatos, Jing Li, Vijitashwa Pandey

Mechanical Engineering Department Oakland University

Amandeep Singh, Matthew Castanier, David LambUS Army, TARDEC

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 13 APR 2011		2. REPORT TYPE Briefing Charts		3. DATES COVE 13-04-201	ERED 1 to 13-04-2011
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER
	AND OPTIMIZATI VEHICLE FLEET		OGY FOR	5b. GRANT NUM	MBER
RELIABILITY OF	VEHICLE FLEE	18		5c. PROGRAM F	ELEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
Zissimos Mourelatos; Jing Li; Matt Castanier; Amandeep Sing			p Singh; David	gh; David 5e. TASK NUMBER	
Lamb				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AECC ,6501 E.11 Mile I	` '	97-5000	8. PERFORMING REPORT NUMB #21740	G ORGANIZATION ER
	RING AGENCY NAME(S) A	` '	3397-5000	10. SPONSOR/M TARDEC	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S) #21740	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO Submitted to 2011	SAE WORLD CON	IGRESS			
14. ABSTRACT Briefing charts.					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	43	

Report Documentation Page

Form Approved OMB No. 0704-0188

Overview

- ➤ What is reliability ??
- > Basics of reliability methods for repairable and non-repairable systems
- ➤ Estimation of PDF of Time Between Failures (TBF) using <u>limited</u>, <u>censored</u> data
 - "Frequentist" approach (Method 1)
 - Bayesian updating approach (Method 2)
 - ✓ "Enhances" data with expert opinion

What is Reliability?

Reliability at time t is the probability that the system has not failed before time t.

$$R(t) = P(T > t) = 1 - P(T \le t)$$

Reliability Basics for Non-Repairable Systems

$$R(t) = P(T > t) = 1 - P(T \le t) \Longrightarrow R(t) = 1 - F(t)$$
 (1)

$$\lambda(t) = \frac{P(t < T \le t + dt/T > t)}{dt} = \frac{P(t < T \le t + dt)}{dt * P(T > t)} =$$

Failure Rate

$$= \frac{F(t+dt)-F(t)}{dt*R(t)} \Longrightarrow \lambda(t) = \frac{f(t)}{R(t)}$$
 (2)

$$R(t) = 1 - F(t) \Rightarrow \frac{dR}{dt} = -f(t) \Rightarrow \frac{dR}{dt} = -\lambda(t)R(t) \Rightarrow$$

$$\Rightarrow \frac{dR}{R} = -\lambda dt \Rightarrow d(\ln R) = -\lambda dt \Rightarrow \ln\left(\frac{R(t)}{R(0)}\right) = -\int_{0}^{t} \lambda dt \Rightarrow$$

$$\Rightarrow R(t) = \exp[-\int_{0}^{t} \lambda dt]$$

All we need is the failure rate

mileage or time

$$N_{\rm f} = \sum_{i=1}^{m} N_{\rm f}$$

$$\lambda_{i} = \frac{f_{i}}{1 - F_{i}} = \frac{f_{i}}{1 - \sum_{j=1}^{i-1} \frac{N_{f_{j}}}{N_{f}}} = \frac{N_{f_{i}}}{\left(N_{f} - \sum_{j=1}^{i-1} N_{f_{j}}\right) \Delta t}$$

$$\boldsymbol{H}_{i} = \sum_{j=1}^{i} \lambda_{j} \Delta t$$

$$R_i = 1 - F_i = 1 - \sum_{j=1}^{i-1} \frac{N_{f_i}}{N_f}$$

$$R_i = e^{-H_i}$$

Reliability Calculation

All we need for calculating the reliability of a system (non-repairable or repairable) is the system PDF of time to failure (TTF)

We use:

- > Data to estimate the PDF of TTF for each component
- ➤ Monte Carlo simulation to estimate the PDF of TTF for the system

Basics of Reliability Methods(Repairable Systems)

$$p = \frac{k_{\Delta t}}{N} \quad \text{: Probability of failure in } \Delta t \quad \text{(very small if } \Delta t \to 0 \text{)}$$
 # of systems (vehicles) in fleet

If p is independent of Δt segment \Longrightarrow Homogeneous Poisson Process (HPP)

If p depends on Δt segment \Longrightarrow Non-Homogeneous Poisson Process (NHPP)

Homogeneous Poisson Process (HPP)

pn: Expected (average) # of failures / system in (0, T]

Probability of failure in Δt

Define:
$$\lambda T = pn$$

 λ : Average # of failures per system per unit time (failure rate, hazard rate, intensity rate, repair rate)

Homogeneous Poisson Process (HPP)

Reliability Calculation for HPP at $T = n\Delta t$

* Assume statistically independent events at each Δt

$$R(T) = (1-p)(1-p)\cdots(1-p) = (1-p)^{n}$$

$$= \left(1 - \frac{\lambda t}{n}\right)\left(1 - \frac{\lambda t}{n}\right)\cdots\left(1 - \frac{\lambda t}{n}\right) = \left(1 - \frac{\lambda t}{n}\right)^{n} = (1 - \lambda \Delta t)^{n}$$

$$= e^{-\lambda T} \text{ if } \Delta t \to 0$$

Non-Homogeneous Poisson Process (NHPP)

Reliability Calculation for NHPP at $T = n\Delta t$

* Assume statistically independent events at each Δt

$$R(T) = (1 - p_1)(1 - p_2) \cdots (1 - p_n)$$

$$= (1 - \lambda_1 \Delta t)(1 - \lambda_2 \Delta t) \cdots (1 - \lambda_n \Delta t)$$

$$= \exp\left[-\int_0^T \lambda(t)dt\right] = e^{-H(T)} \quad \text{if} \quad \Delta t \to 0$$

Same formula with nonrepairable systems Cumulative Hazard Rate

Reliability Calculation

Series Systems

$$R = R_1 * R_2 * \dots * R_n =$$

$$= e^{-\lambda_1 t} * e^{-\lambda_2 t} * \dots * e^{-\lambda_n t} = e^{-\lambda t}$$

where:
$$\lambda = \lambda_1 + \lambda_2 + \cdots + \lambda_n$$

Reliability Calculation

Parallel Systems

$$R = 1 - (1 - R_1) * (1 - R_2) * \cdots * (1 - R_n)$$

Calculation of Hazard Rate $\lambda(t)$

Determine average # of failures $k_{\Delta t}(t)$ among N systems

in each Δt . Then :

$$\lambda(t) = \frac{k_{\Delta t}(t)}{N\Delta t}$$

Calculation of Hazard Rate $\lambda(t)$

For constant hazard rate systems:

$$\lambda = \frac{1}{MTBF}$$

For most engineering systems, the hazard rate <u>IS NOT</u> constant. To estimate it, we need the PDF of TTF for each component.

Reliability Calculation

All we need for calculating the reliability of a system (non-repairable or repairable) is the system PDF of time to failure (TTF)

We use:

- > Data to estimate the PDF of TTF for each component
- ➤ Monte Carlo simulation to estimate the PDF of TTF for the system

Estimation of the PDF (or CDF) of the TTF (TBF) using Limited, Censored Data

> Censored MLE Approach

Limited Data

Group L1

Origina	l data	U	pdate	d data	ì
Vehicle#	mileage	Vehi	icle# 1	mileag	ge
10	741	1	10)247	
4	5273	2	9	044	
7	6027	2	8	977	
5	7398	3	13	3984	
6	7495	3	4	064	
2	9044	4	5	273	
1	10247	4	. 9	9747	
8	12008	5	5 7	7398	
7	12011	5	7	611	
9	12014	6	5 7	7495	
10	12074	(6	7516	
3	13984	7	' 6	5027	
5	15009	7	5	5984	
6	15011	7	5	373	
4	15020	8	3 1	2008	
7	17384	9	1	2014	
2	18021	1	0	741	
3	18048	1	0 1	1333	

Censored MLE Approach

- Using available limited data (TBFs and censoring mileage),
 "estimate" PDF of TBF using a censored MLE approach.
- Tail sample the PDF of previous step to "enhance" the original limited data.
- Using "enhanced" data from previous step, "better estimate" the PDF of TBF using an uncensored MLE approach.
- Using the PDF of previous step, a Bootstrap approach estimates statistics of TBF (e.g. distribution of MTBF, distribution of TBF standard deviation, etc.)

Notation

Group L1

Origina	l data	Upo	Updated data			
Vehicle#	mileage	Vehicle	e# mileage			
10	741	1	10247			
4	5273	2	9044			
7	6027	2	8977			
5	7398	3	13984			
6	7495	3	4064			
2	9044	4	5273			
1	10247	4	9747			
8	12008	5	7398			
7	12011	5	7611			
9	12014	6	7495			
10	12074	6	7516			
3	13984	7	6027			
5	15009	7	5984			
6	15011	7	5373			
4	15020	8	12008			
7	17384	9	12014			
2	18021	10	741			
3	18048	10	11333			

2011-01-0725

Observation / Assumption

$$dM_i = X_i \sim \beta(A, B, p, q), \quad (A \le X_i \le B, \text{ and } p > 0, q > 0)$$

$$f(x,A,B,p,q)=\beta(p,q)^{-1}(x-A)^{p-1}(B-x)^{q-1}/(B-A)^{p+q-1}$$
, $(A \le x \le B, and p > 0, q > 0)$

$$A = 0$$
 $B = 45,000 \text{ miles}$
 $p = 3, q = 5$

Observation / Assumption

Beta distribution family is used to model TBF.

$$A=0, B=30000$$

$$f(x,A,B,p,q) = \beta(p,q)^{-1}(x-A)^{p-1}(B-x)^{q-1}/(B-A)^{p+q-1}$$
, $(A \le x \le B, \text{ and } p > 0, q > 0)$

MLE Approach

Determines parameters (A, B, p, q) of "most likely" Beta distribution using available data. It provides Likelihood function in Bayesian estimation.

Censored MLE

Uncensored MLE

$$\underset{A,B,p,q}{Max} \prod_{i=1}^{N} f(x_i, A, B, p, q)$$

System Reliability and Reliability Allocation

Reliability Allocation

Specify system (vehicle) reliability

Determine required reliability of EACH component

9

This optimization problem DOES NOT have a unique solution

Reliability Allocation

One way to get a unique solution is to trade-off reliability and associated cost

 $\min_{\underline{R}_{comp}} Cost$

Target system , reliability

s. t. System Re liability = R^{t}

By varying R^t , we get the so called "Pareto Frontier."

Reliability vs Risk of Failure (Cost)

We want to maximize Reliability and simultaneously minimize Risk of failure (cost)

Reliability – Cost Pareto Front Calculation

Definition of Design Variables

$$f(x,A,B,p,q)=\beta(p,q)^{-1}(x-A)^{p-1}(B-x)^{q-1}/(B-A)^{p+q-1}, (A \le x \le B, and p > 0, q > 0)$$

$$\mu = MTBF$$

Assume constant COV

Then:

$$\overline{\mu} = \frac{\mu - A}{B - A}$$
 $\overline{\sigma} = \frac{\sigma}{B - A}$

$$p = \overline{\mu} \left(\frac{\overline{\mu} (1 - \overline{\mu})}{\overline{\sigma}^2} - 1 \right),$$

$$q = \left(1 - \overline{\mu}\right) \left(\frac{\overline{\mu}(1 - \overline{\mu})}{\overline{\sigma}^2} - 1\right)$$

Reliability-Cost Relation

$$cost = cost_0 e^{k(MTBF/MTBF_0-1)}$$
: For each component

$$Cost = \sum_{i_{C}=1}^{N_{C}} \left[cost_{0} e^{k(MTBF/MTBF_{0}-1)} (1 + failure counts) \right]_{i_{C}}$$

For system with Nc components

Example

Input Information

Component Number Comp No.	Baseline MTBF in hours (MTBF ₀)	Coefficient of Variation	$oldsymbol{B}_{factor}$	Baseline cost (Cost ₀)	k
1	4076	0.3	3	\$27,500.00	1
2	15000	0.3	3	\$7,000.00	1
3	26510	0.3	3	\$3,000.00	1
4	40000	0.3	3	\$5,000.00	1
5	18000	0.3	3	\$5,000.00	1
6	8000	0.3	3	\$500.00	1
7	31809	0.3	3	\$22,500.00	1
8	9520	0.3	3	\$30,000.00	1
9	9713	0.3	3	\$12,500.00	1
10	2330	0.3	3	\$20,000.00	1
11	40000	0.3	3	\$27,500.00	1
12	8614	0.3	3	\$1,000.00	1
13	45000	0.3	3	\$30,000.00	1
14	20000	0.3	3	\$3,000.00	1
15	25000	0.3	3	\$15,000.00	1

Histogram of System failures

Reliability Comparison between Repairable And Non-Repairable System

System Reliability-Cost Pareto Front

